Synthesis and Characterization of Bicapped Hexagonal Bipyramidal 2,3-Cl 2 -1,8-\{Cp*Re $\}_{2} \mathbf{B}_{6} \mathrm{H}_{4}$
 $\left[\left\{\mathrm{Cp}^{*} \operatorname{Re}\right\}_{2}\left\{\boldsymbol{\mu}-\boldsymbol{\eta}^{6}: \boldsymbol{\eta}^{6}-\mathbf{1 , 2}-\mathrm{B}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}\right\}, \mathrm{Cp}^{*}=\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right]:$ The Missing Link Connecting (p-2) Skeletal Electron Pair Hypoelectronic Rhenaboranes and 24-Valence Electron Triple-Decker Complexes

Sundargopal Ghosh, Alicia M. Beatty, and
Thomas P. Fehlner*
Department of Chemistry and Biochemistry University of Notre Dame, Notre Dame, Indiana 46556

Received May 14, 2001
Metallaboranes of the earlier transition metals present interesting challenges to the well-established cluster electron-counting rules. ${ }^{1-5}$ We have recently described a series of rhenaboranes of both unusual shape and electron count (Chart 1: rhenium-boron bonding not shown). ${ }^{6,7}$ These boron-rich clusters, with formal skeletal electron counts (sep) considerably less than that prescribed, do not utilize the capping mechanism adopted by metal clusters and metal-rich metallaboranes to accommodate the electron-poor metal fragments. Rather, the structure taken up is one that retains the same total vertex connectivity as the most spherical forms found for the boranes but with a less uniform distribution of vertex connectivites. ${ }^{8}$ Two vertices of high connectivity are occupied by the metal atoms, but the structures lack the three-connect vertices found in the capped structures exhibited by metal clusters. ${ }^{8}$

A proposed rationale for the observed electron counts of the closed rhenaboranes, $\{\mathrm{Cp} * \mathrm{Re}\}_{2} \mathrm{~B}_{n} \mathrm{H}_{n}, n=7-10, \mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5}{ }^{-}$ Me_{5}, is based on the hypothetical parent of the series, $\{\mathrm{Cp} * \mathrm{Re}\}_{2^{-}}$ $\mathrm{B}_{6} \mathrm{H}_{6}$. The latter is a closed, deltahedral, hypoelectronic rhenaborane with a $(p-2)$ sep count, but it is also a 24 -valence electron (ve) triple-decker complex. Triple-decker complexes of this type are known for valence electron counts of 24-34 and, most importantly, the connection between composition, structural parameters, and electron count is well understood. ${ }^{9-11}$ In essence, as the electron count decreases, the metal fragments move together, and the molecular orbital manifold responds accordingly. Two filled metal-localized orbitals, which are MM bonding and antibonding, respectively, separate with the latter rising to higher energy. At lower electron counts, a degenerate set of filled central ring orbitals, which are antibonding with respect to metal δ symmetry orbitals, also rise to higher energy as the $\mathrm{M}-\mathrm{M}$ distance decreases. In the 24 ve triple-decker complex, the MM antibonding orbital and the M-ring antibonding orbitals are empty. ${ }^{12-15}$

[^0]
Chart 1

As $\{\mathrm{Cp} * \operatorname{Re}\}_{2} \mathrm{~B}_{6} \mathrm{H}_{6}$ is the key compound in understanding these ($p-2$) sep rhenaboranes, we sought to establish its existence and now report a dichloro derivative.

Although the reaction of $\left\{\mathrm{Cp}^{*} \mathrm{ReH}_{2}\right\}_{2} \mathrm{~B}_{4} \mathrm{H}_{4}$ with $\mathrm{BH}_{3} \cdot \mathrm{THF}$ probably produces $\{\mathrm{Cp} * \mathrm{Re}\}_{2} \mathrm{~B}_{6} \mathrm{H}_{6}$, its spectroscopic simplicity and our inability to isolate the compound led us to seek an alternative approach. $\mathrm{BHCl}_{2} \cdot \mathrm{SMe}_{2}$ is a monoborane we have used as an effective replacement of $\mathrm{BH}_{3} \cdot$ THF twice previously; ${ }^{16,17}$ thus, we explored its reactivity with $\left\{\mathrm{Cp} * \mathrm{ReH}_{2}\right\}_{2} \mathrm{~B}_{4} \mathrm{H}_{4}$. Despite the fact that H / Cl-exchange processes generate a complex product mixture, this approach was successful. ${ }^{18}$ The molecular mass gives a molecular formula $\{\mathrm{Cp} * \operatorname{Re}\}_{2} \mathrm{~B}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ corresponding to a dichloro-derivative of the desired compound. The ${ }^{11} \mathrm{~B}$ NMR shows three types of boron environments in a 1:1:1 ratio, suggesting two types of BH and one BCl . The ${ }^{1} \mathrm{H}$ NMR reveals equivalent Cp* ligands and no metal hydrides or bridging hydrogen atoms. These data were consistent with a triple-decker complex with either a planar or puckered centrosymmetric B_{6} ring and definitive structural characterization required a solid-state structure determination.

The molecular structure of $\mathbf{1}$ is shown in Figure 1 where it is seen to be $\{\mathrm{Cp} * \operatorname{Re}\}_{2}\left\{\mu-\eta^{6}: \eta^{6}-1,2-\mathrm{B}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}\right\}$ fully consistent with the solution spectroscopic data. ${ }^{19}$ The molecule possesses a planar (mean plane standard deviation $=0.008 \AA$) $1,2-\mathrm{B}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ ring sandwiched between two Cp *Re fragments. The average Re^{-} Re distance of $2.6889(5) \AA$ is shorter than that found in $\{\mathrm{Cp} * \operatorname{Re}\}_{2} \mathrm{~B}_{n} \mathrm{H}_{n}, n=7-10$, ($\mathrm{av}=2.82 \AA$) but still longer than that expected for a $\mathrm{Re}-\mathrm{Re}$ double bond. ${ }^{7,20}$ The $\mathrm{B}-\mathrm{B}$ and $\mathrm{Re}-\mathrm{B}$ distances are in the range found for the other rhenaboranes

[^1]

Figure 1. The molecular structure of $\{\mathrm{Cp} * \operatorname{Re}\}_{2}\left\{\mu-\eta^{6}: \eta^{6}-1,2-\mathrm{B}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}\right\}$, 1. Selected bond distances (\AA) from one independent molecule: $\operatorname{Re}(1)-$ $B(2) 2.145(12), \operatorname{Re}(1)-B(1) 2.169(10), \operatorname{Re}(1)-B(4) 2.192(11), \operatorname{Re}(1)-$ B(5) 2.200(11), $\operatorname{Re}(1)-B(6) 2.229(10), \operatorname{Re}(1)-B(3) 2.246(13), \operatorname{Re}(1)-$ $\operatorname{Re}(2) 2.6887(5), \operatorname{Re}(2)-B(2) 2.153(12), \operatorname{Re}(2)-B(5) 2.161(10), \operatorname{Re}(2)-$ $\mathrm{B}(4) 2.169(11), \operatorname{Re}(2)-\mathrm{B}(1) 2.173(10), \operatorname{Re}(2)-\mathrm{B}(6) 2.179(10), \operatorname{Re}(2)-$ $\mathrm{B}(3) 2.231(12), \mathrm{Cl}(1)-\mathrm{B}(1) 1.746(10), \mathrm{Cl}(2)-\mathrm{B}(2) 1.787(12), \mathrm{B}(1)-\mathrm{B}(6)$ $1.710(15), \mathrm{B}(1)-\mathrm{B}(2) 1.780(16), \mathrm{B}(2)-\mathrm{B}(3) 1.700(18)$, $\mathrm{B}(3)-\mathrm{B}(4)$ $1.732(19), \mathrm{B}(4)-\mathrm{B}(5) 1.701(17), \mathrm{B}(5)-\mathrm{B}(6) 1.732(15)$.
characterized. The former range from 1.70 to $1.78 \AA$ and the average is about $0.3 \AA$ longer than the average $\mathrm{C}-\mathrm{C}$ distance in, for example, 26 ve $\{\mathrm{Cp} * V\}_{2}\left\{\mu-\eta^{6}: \eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right\}$ (1.44 \AA) with no $\mathrm{V}-\mathrm{V}$ bond. ${ }^{21}$ The methyl groups of the $\mathrm{Cp} *$ ligand are staggered relative to the chlorine atoms of the central ring forcing the antipodal BH hydrogens to near eclipsed orientations relative to methyl groups: however, the Cp * rings are nearly coplanar (dihedral angle 1.2°). The B_{6} ring of $\mathbf{1}$ is not puckered as found in 24 ve $\{\mathrm{Cp} * \mathrm{~V}\}_{2}\left\{\mu-\eta^{3}: \eta^{3}-\mathrm{P}_{6}\right\} .{ }^{22}$ The rationale presented for the puckered structure has been detailed by others ${ }^{13}$ and resides in the magnitude of the difference between the metal and bridging-

[^2]
Chart 2

1

$\left(\mathrm{Cp}^{*} \mathrm{Re}\right)_{2} \mathrm{~B}_{4} \mathrm{H}_{4} \mathrm{CO}_{2}(\mathrm{CO})_{5}$
ring orbital energies. The greater compatibility of boron and rhenium orbital energies favors a planar central ring normally associated with triple-decker complexes.

Compound $\mathbf{1}$ is isolobal with known 24 ve $\left\{\mathrm{Cp}^{*} \mathrm{Cr}\right\}_{2}\left\{\mu-\eta^{6}\right.$: $\left.\eta^{6}-\left(\mu-1,2-\mathrm{C}_{3} \mathrm{H}_{6}-1,2-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{4}\right)\right\}, \mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5},{ }^{23}$ and $\left\{\mathrm{Cp}^{* R e}\right\}_{2^{-}}$ $\left\{\mu-\eta^{6}: \eta^{6}-1,2-\mathrm{B}_{4} \mathrm{H}_{4} \mathrm{Co}_{2}(\mathrm{CO})_{5}\right\}^{24}$ both of which contain planar, hexahapto, six-membered rings bridging two $\mathrm{Cp} * \mathrm{M}$ fragments (Chart 2). 1, however, is the first triple-decker complex with a six-membered central ring composed solely of boron atoms. In the context of the $\{\mathrm{Cp} * \operatorname{Re}\}_{2} \mathrm{~B}_{n} \mathrm{H}_{n}$ series (Chart 1), it is also a compound with $(\mathrm{p}-2)$ sep, that is, the expected count for closo 1 is 9 sep which corresponds to a triple-decker complex of 30 ve. This dual identity provides justification for viewing the higher members of the $\{\mathrm{Cp} * \mathrm{Re}\}_{2} \mathrm{~B}_{n} \mathrm{H}_{n}$ series as triple-decker complexes with elaborated borane rings. Indeed, we have already shown that an analogous emptying of three MOs occurs when $\{\mathrm{Cp} * \mathrm{Re}\}_{2} \mathrm{~B}_{7} \mathrm{H}_{7}$ in a hypothetical tricapped trigonal prismatic geometry rearranges to the observed geometry-one is $\mathrm{M}-\mathrm{M}$ antibonding and the other two are M_{2}-ring antibonding but with some $\mathrm{B}-\mathrm{B}$ bonding character. ${ }^{25}$ In essence, closed, dimetal metallaboranes of the earlier transition metals support oblate shapes possessing an equatorial borane belt, high-coordinate metal fragments in polar positions, and cross-cluster metal-metal bonding. A more detailed analysis is in progress.

Acknowledgment. The support of the National Science Foundation is gratefully acknowledged.

Supporting Information Available: CIF file for 1. This material is available free of charge via the Internet at http://pubs.acs.org.
JA0111840

[^3]
[^0]: (1) Wade, K. Inorg. Nucl. Chem. Lett. 1972, 8, 559.
 (2) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1.
 (3) Mingos, D. M. P. Nature (London) Phys. Sci. 1972, 236, 99.
 (4) Mingos, D. M. P.; Wales, D. J. Introduction to Cluster Chemistry; Prentice Hall: New York, 1990.
 (5) Weller, A. S.; Aldridge, S.; Fehlner, T. P. Inorg. Chim. Acta 1999, 289, 85
 (6) Weller, A. S.; Shang, M.; Fehlner, T. P. Organometallics 1999, 18, 853.
 (7) Ghosh, S.; Shang, M.; Li, Y.; Fehlner, T. P. Angew. Chem., Int. Ed. 2001, 40, 1125
 (8) Ghosh, S.; Rheingold, A. L.; Fehlner, T. P. Chem. Commun. 2001, 895.
 (9) Herberich, G. E. In Comprehensive Organometallic Chemistry II; Abel, E., Stone, F. G. A., Wilkinson, G.,Eds.; Pergamon Press: Oxford, 1995; Vol. 1; p 197.
 (10) Grimes, R. N. Coord. Chem. Rev. 1979, $28,47$.
 (11) Edwin, J.; Bohm, M. C.; Chester, N.; Hoffman, D. M.; Hoffmann, R.; Pritzkow, H.; Siebert, W.; Stumpf, K.; Wadepohl, H. Organometallics 1983, 2, 1666.
 (12) Tremel, W.; Hoffmann, R.; Kertesz, M. J. Am. Chem. Soc. 1989, 111, 2030.
 (13) Reddy, A. C.; Jemmis, E. D.; Scherer, O. J.; Winter, R.; Heckmann, G.; Wolmershäuser, G. Organometallics 1992, 11, 3894.

[^1]: (14) Jemmis, E. D.; Reddy, A. C. Organometallics 1988, 7, 1561.
 (15) Lauher, J. W.; Elian, M.; Summerville, R. H.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 3219.
 (16) Hong, F.-E.; Eigenbrot, C. W.; Fehlner, T. P. J. Am. Chem. Soc. 1989, 111, 949.
 (17) Aldridge, S.; Hashimoto, H.; Kawamura, K.; Shang, M.; Fehlner, T. P. Inorg. Chem. 1998, 37, 928.
 (18) Reaction of excess $\mathrm{BHCl}_{2} \cdot \mathrm{SMe}_{2}$ with $\left\{\mathrm{Cp}^{*} \mathrm{ReH}_{2}\right\}_{2} \mathrm{~B}_{4} \mathrm{H}_{4}$ in toluene followed by heating at $75{ }^{\circ} \mathrm{C}$ for 18 h yielded a mixture of products from which four compounds could be isolated by fractional crystallization followed by TLC (silica gel with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 7: 3$). Two were of known structure: $\{\mathrm{Cp} * \mathrm{Re}\}_{2} \mathrm{~B}_{7} \mathrm{H}_{7}$ and its monochloro derivative $\left\{\mathrm{Cp}^{*} \mathrm{Re}\right\}_{2} \mathrm{~B}_{7} \mathrm{H}_{6} \mathrm{Cl}$. The third, $\{\mathrm{Cp} * \mathrm{ReH}\}_{2} \mathrm{~B}_{5} \mathrm{Cl}_{5}$, is a new compound and will be described in the full publication. The fourth, $\{\mathrm{Cp} * \operatorname{Re}\}_{2}\left\{\mu-\eta^{6}: \eta^{6}-1,2-\mathrm{B}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}\right\}$, 1, was isolated (second TLC band) in 4% yield as a yellow solid and crystalized by slow diffusion $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $)$ at $5{ }^{\circ} \mathrm{C}$. Spectroscopic data for 1 . MS(FAB-NBA), p^{+}isotope cluster, 782 max, $6 \mathrm{~B}, 2 \mathrm{Re}, 2 \mathrm{Cl} ;{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 22{ }^{\circ} \mathrm{C}, \delta \mathrm{ppm}\right.$, J Hz) 87.3 (s, 2B), 67.9 (d, 158, 2B), 59.3 (d, 161, 2B); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 22$ $\left.{ }^{\circ} \mathrm{C}, \delta \mathrm{ppm}\right) 7.7(\mathrm{brq}, 2 \mathrm{H}), 6.4(\mathrm{br} \mathrm{q}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 30 \mathrm{H})$
 (19) Crystal data: $(170 \mathrm{~K}) \mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~B}_{6} \mathrm{Cl}_{2} \mathrm{Re}_{2}$, MW $=782.63$, triclinic, $P-1$, $a=10.511(1) \AA, b=14.379(1) \AA, c=16.776(2) \AA, \alpha=89.965(2)^{\circ}, \beta=$ 89.905(2) ${ }^{\circ}, \gamma=85.253(2)^{\circ}, Z=4, V=2526.7(4) \AA^{3}, \mu=9.79 \mathrm{~mm}^{-1}, 11489$ unique reflections, $\mathrm{R} 1=0.0365$ (0.0421 for all data), $\mathrm{wR} 2=0.0794(0.0872$ for all data). Although the unit cell refined as nearly monoclinic, systematic absences were not consistent with monoclinic space groups. Therefore, the space group was determined to be $P-1$ with pseudomerohedral twinning (matrix applied: - $1000-10001$), resulting in two molecules per asymmetric unit. The two components of the twin were determined to be present in a 76 to 24% ratio.
 (20) Cotton, F. A.; Walton, R. A. Multiple Bonds Between Metal Atoms; Wiley: New York, 1982.

[^2]: (21) Duff, A. W.; Jonas, K.; Goddard, R.; Kraus, H.-J.; Krüger, C. J. Am. Chem. Soc. 1983, 105, 5479.
 (22) Scherer, O. J.; Swarowsky, H.; Wolmershäuser, G.; Kaim, W.; Kohlmann, S. Angew. Chem., Int. Ed. Engl. 1987, 26, 1153.

[^3]: (23) Kawamura, K.; Shang, M.; Wiest, O.; Fehlner, T. P. Inorg. Chem. 1998, 37, 608.
 (24) Ghosh, S.; Shang, M.; Fehlner, T. P. J. Am. Chem. Soc. 1999, 121, 7451.
 (25) Weller, A. S.; Shang, M.; Fehlner, T. P. Chem. Commun. 1998, 1787.

